

Facts & Features

- Tested according to ACI 355.2 and AC193 (ICC ESR #-4460)
- Qualified for static, wind, and seismic loading conditions (seismic design categories A through F)
- Code listed under IBC/IRC in accordance with ICC-ES AC193 & ACI 355.2 for cracked & uncracked concrete
- Installs using standard-sized ANSI tolerance drill bits
- Suitable when reduced edge distances or spacing is required
- Finished hex head leaves no exposed threads
- Fully removable
- Exterior grade coating tested in chemically treated wood according to AC257

Applications

- Structural fastening in cracked & uncracked concrete in indoor conditions
- Formwork and fastening
- Anchoring racking and shelving
- Railings and handrails
- Ledger attachment

Code Approvals/Listings

- 2018, 2015, 2012, and 2009 International Building Code® (IBC)
- 2018, 2015, 2012, and 2009 International Residential Code® (IRC)
- 2019 and 2016 California Building Code (CBC)
- 2019 and 2016 California Residential Code (CRC)
- 2017 City of Los Angeles Building Code (LABC)
- 2017 City of Los Angeles Residential Code (LARC)
- 2017 Florida Building Code Building (FBC)
- 2017 Florida Building Code Residential (FRC)
- Florida Building Code High Velocity Hurricane Zone (HVHZ) Provisions
- Miami Dade NOA # 20-1103.16

Coating Information

- 3-layer exterior coating
- Independently tested according to AC257 Exposure Condition 3
- Exceeds the protection offered by hot-dipped galvanized coatings
- · Approved for use in exterior environments and chemically treated lumber

TorqueMaster L.D. Screw Anchor Length Code Identification System

_	D marking on ex head	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N
Overall	From	1	2	2	3	3	4	4	5	5	6	6	7	7	8
Anchor	From	1/2		1/2		1/2		1/2		1/2		1/2		1/2	
Length	Up to, but	2	2	3	3	4	4	5	5	6	6	7	7	8	8
(in.)	not including		1/2		1/2		1/2		1/2		1/2		1/2		1/2

TorqueMaster L.D. Screw Anchor Product Data

Size (in.)	SKU	Thread Length (in.)	Drill Bit Size (in.)	Wrench/Socket Size (in.)	Box Qty
3/8" x 1-3/4"	53246	1-3/4"	3/8"	9/16"	50
3/8" x 2-1/2"	53247	2-1/2"	3/8"	9/16"	50
3/8" x 3"	53248	3"	3/8"	9/16"	50
3/8" x 4"	53249	4"	3/8"	9/16"	50
1/2" x 3"	53250	3"	1/2"	3/4"	25
1/2" x 4"	53251	4"	1/2"	3/4"	25
1/2" x 5"	53252	5"	1/2"	3/4"	25
1/2" x 6"	53253	5"	1/2"	3/4"	20
1/2" x 8"	54917	5"	1/2"	3/4"	10
5/8" x 3"	53254	3"	5/8"	15/16"	10
5/8" x 4"	53255	4"	5/8"	15/16"	10
5/8" x 5"	53256	5"	5/8"	15/16"	10
5/8" x 6"	53257	6"	5/8"	15/16"	10
5/8" x 8"	54918	6"	5/8"	1-1/8"	5
3/4" x 4-1/2"	53258	4"	3/4"	1-1/8"	10
3/4" x 5-1/2"	53259	5"	3/4"	1-1/8"	10
3/4" x 6-1/4"	53260	5"	3/4"	1-1/8"	5
3/4" x 8"	54919	7"	3/4"	1-1/8"	5

TorqueMaster L.D. Screw Anchor Installation Instructions

- 1. **DRILL** hole in concrete using a hammer drill. Use TorqueMaster SDS+ drill bits and an SDS hammer drill for best results. The hole must be at least 1/4" deeper than the length of the fastener.
- 2. **CLEAN** hole of debris and dust using a vacuum or compressed air.
- 3. **DRIVE** fastener into pre-drilled hole using a powered impact wrench. Anchor should be driven until the head washer comes in contact with the part being fastened. The anchor must be snug after installation.

TorqueMaster L.D. Screw Anchor Installation Parameters

Chamadaniatia	Complete	1124	Nominal Anchor Diameter (inch)								
Characteristic	Symbol	Unit	3/8		1/2		5/8		3/4		
Drill Bit Diameter	Do	in. (mm)	3/8 (9.5)	3/8 (9.5)	1/2 (12.7)	1/2 (12.7)	5/8 (15.9)	5/8 (15.9)	3/4 (19.1)	3/4 (19.1)	
Nominal Embedment Depth	h _{nom}	in. (mm)	2 1/2 (64)	3 1/4 (83)	3 (76)	4 1/4 (108)	3 1/4 (83)	5 (127)	4 (102)	6 1/4 (159)	
Effective Embedment Depth	h _{ef}	in. (mm)	1.85 (47)	2.49 (63)	2.21 (56	3.27 (83)	2.36 (60)	3.85 (98)	2.97 (75)	4.89 (124)	
Minimum Hole Depth	h _{hole}	in. (mm)	2 3/4 (70)	3 1/2 (89)	3 3/8 (86)	4 5/8 (117)	3 5/8 (92)	5 3/8 (137)	4 3/8 (111)	6 5/8 (168)	
Fixture Hole Diameter	d _f	in. (mm)		/2 2.7)		5/8 15.9)		/4 9.1)		7/8 22.2)	
Maximum Installation Torque	T _{inst,max}	ft-lbf (N-m)	35 (47)	50 (68)	45 (61)	65 (88)	85 (115)	100 (136)	115 (156)	150 (203)	
Maximum Impact Wrench Torque Rating	T _{impact.max}	ft-lbf (N-m)	380 (515)	380 (515)	380 (515)	380 (515)	380 (515)	380 (515)	380 (515)	380 (515)	
Minimum Concrete Thickness	h _{min}	in. (mm)	4 (102)	4 3/4 (121)	4 3/4 (121)	6 3/4 (171)	5 (127)	7 (178)	6 (152)	8 1/8 (206)	
Critical Edge Distance	Cac	in. (mm)	4 (102)	5 (127)	4 1/2 (114)	5 (127)	3 3/4 (95)	7 (178)	4 1/2 (114)	8 (203)	
Minimum Edge Distance (C _{min})	C _{min}	in. (mm)	1 1/2 (38)	1 1/2 (38)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	
Minimum Anchor Spacing (S _{min})	S _{min}	in. (mm)	3 (76)	3 (76)	3 (76)	3 (76)	4 (102)	4 (102)	4 (102)	4 (102)	
Minimum Overall Anchor Length		in. (mm)	2 3/4 (76)	3 1/2 (89)	3 1/4 (82)	4 1/2 (114)	3 1/2 (89)	5 1/4 (133)	4 1/4 (108)	6 1/2 (165)	
Torque Wrench Socket Size	-	in. (mm)	9/	'16		3/4		15/16		1 1/8	
Maximum Fixture Thickness ²	t _{fix}	in. (mm)	L-2 1/2 (L-64)	L-3 1/4 (L-83	L-3 (L-76)	L-4 1/4 (L-108)	L-3 1/4 (L-83)	L-5 (L- 127)	L-4 (L- 102)	L-6 1/4 (L-159)	

^{1.} The tabulated data is to be used in conjunction with the design criteria given in ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable

 $^{{\}it 3. For a glossary of definitions for terms listed above, visit www.fastener$ $connection.com}\\$

^{2.} L = total anchor length

TorqueMaster L.D. Screw Anchor Tension & Shear Design Information^{1,2}

Characteristic	Symbol	Unit		Nominal Anchor Diameter						
Characteristic	Symbol	Unit	3/8"		1/2"		5/8"		3/4"	
Nominal Embedment Depth	h _{nom}	in (mm)	2 ½ (64)	3 ¼ (83)	3 (76)	4 ¼ (108)	3 ¼ (83)	5 (127)	4 (102)	6 ¼ (159)
Anchor Category	1, 2, or 3	-				1				
		Steel S	Strength in Ten	sion and Shea	ır					
Minimum specified ultimate strength	f _{uta}	psi (N/mm²)		,000 65)	107,000 (738)		102,000 (703)		99,000 (683)	
Minimum specified yield strength	f _y	psi (N/mm²)		800 12)	85,600 (590)		81,600 (563)		79,200 (546)	
Effective stress area (screw anchor body)	A _{se}	in² (mm²)	0.0943 (60.8)		0.1768 (114.4)		0.2703 (174.4)		0.3988 (257.3)	
Steel Strength in Tension	N _{sa}	lb (kN)	10,465 (46.6)		18,920 (84.1)		27,570 (122.6)		39,480 (175.6)	
Strength Reduction Factor for Steel Failure in Tension	Ø _{sa}	-				0.6	5			
Steel Strength in Shear	V_{sa}	lb (kN)	4,815 (21.4)	4,850 (21.6)	7,270 (32.3)	9,370 (41.7)	10,300 (45.8)	12,735 (56.7)	14,240 (63.3)	14,240 (63.3)
Steel Strength in Shear, Seismic	V _{sa,eq}	lb (kN)	4,075 (18.1)	4,075 (18.1)	5,075 (22.6)	7,140 (31.8)	8,030 (35.7)	10,300 (45.8)	12,105 (53.9)	12,105 (53.9)
Strength Reduction Factor for Steel Failure in Shear	Ø _{sa}	-				0.6	0			
		Pu	Illout Strength	in Tension ³						
Pullout Strength in Uncracked Concrete	N _{p,uncr}	lb (kN)	-	-	-	-	-	-	-	-
Pullout Strength in Cracked Concrete	N _{p,cr}	lb (kN)	-	-	3,225 (14.3)	-	-	-	-	-
Pullout Strength in Cracked Concrete, Seismic	$N_{p,eq}$	lb (kN)	-	-	3,225 (14.3)	-	-	-	-	-
Normalization Exponent, Uncracked Concrete	n	-	-	-	0.50	-	-	-	-	-
Normalization Exponent, Cracked Concrete Strength Reduction Factor for Pullout Strength in	n Ø _p	-	-	-	0.35			-	-	
Tension	·	Concret	e Breakout Str	onath in Tonsi	on					
						2.27	2.26	2.05	2.07	4.00
Effective Embedment	h _{ef}	in (mm)	1.85 (47)	2.49 (63)	2.21 (56)	3.27 (83)	2.36 (60)	3.85 (98)	2.97 (75)	4.89 (124)
Effectiveness Factor for Uncracked Concrete	k _{uncr}	-		27				24		
Effectiveness Factor for Cracked Concrete Strength Reduction Factor for Concrete Breakout	K _{cr}	-	1	.7	21			17		
Strength in Tension	$ oldsymbol{\emptyset}_{cb} $	-				0.6	5			
Axial stiffness in service load range in uncracked concrete	eta_{uncr}	lb/inch (N/mm)	63,150 (11,059)	207,850 (36,400)	139,250 (24,386)	140,060 (24,528)	222,870 (39,031)	254,980 (44,653)	292,630 (51,247)	305,530 (53,506)
Axial stiffness in service load range in cracked concrete	β_{cr}	lb/inch (N/mm)	63,150 (11,059	174,020 (30,476)	130,385 (22,834)	140,060 (24,528)	105,130 (18,411)	192,280 (33,673)	160,050 (28,029)	165,525 (28,968)
		Concre	te Breakout St	rength in She	ar					
Nominal Diameter	d _o ²	in (mm)	3/8 (9.5)	3/8 (9.5)	1/2 (12.7)	1/2 (12.7)	5/8 (15.9)	5/8 (15.9)	3/4 (19.1)	3/4 (19.1)
Load Bearing Length of Anchor	l _e	in (mm)	1.85	2.49 (2.49)	2.21 (56)	3.27 (83)	2.36 (60)	3.85 (98)	2.97 (75)	4.89 (124)
Reduction Factor for Concrete Breakout Strength in Shear	Ø _{cb}	-				0.7	0			
		Concr	rete Pryout Str	ength in Shea	r					
Coefficient for Pryout strength	k _{cp}	-		1.0		2.0	1.0		2.0	
Reduction Factor for Pryout Strength in Shear	Ø _{cp}	-				0.7				

^{1.} The tabulated data is to be used in conjunction with the design criteria given in ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

 $^{{\}it 3. Where no value is reported for pullout strength, the resistance does not need to be considered}\\$

^{2.} All values of Ø were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of Ø must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for the appropriate Ø factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2, as applicable, are used.