Facts & Features - Tested according to ACI 355.2 and AC193 (ICC ESR #-4460) - Qualified for static, wind, and seismic loading conditions (seismic design categories A through F) - Code listed under IBC/IRC in accordance with ICC-ES AC193 & ACI 355.2 for cracked & uncracked concrete - Installs using standard-sized ANSI tolerance drill bits - Suitable when reduced edge distances or spacing is required - Finished hex head leaves no exposed threads - Fully removable - Exterior grade coating tested in chemically treated wood according to AC257 #### **Applications** - Structural fastening in cracked & uncracked concrete in indoor conditions - Formwork and fastening - Anchoring racking and shelving - Railings and handrails - Ledger attachment ### Code Approvals/Listings - 2018, 2015, 2012, and 2009 International Building Code® (IBC) - 2018, 2015, 2012, and 2009 International Residential Code® (IRC) - 2019 and 2016 California Building Code (CBC) - 2019 and 2016 California Residential Code (CRC) - 2017 City of Los Angeles Building Code (LABC) - 2017 City of Los Angeles Residential Code (LARC) - 2017 Florida Building Code Building (FBC) - 2017 Florida Building Code Residential (FRC) - Florida Building Code High Velocity Hurricane Zone (HVHZ) Provisions - Miami Dade NOA # 20-1103.16 ## **Coating Information** - 3-layer exterior coating - Independently tested according to AC257 Exposure Condition 3 - Exceeds the protection offered by hot-dipped galvanized coatings - · Approved for use in exterior environments and chemically treated lumber ## TorqueMaster L.D. Screw Anchor Length Code Identification System | _ | D marking on
ex head | Α | В | С | D | E | F | G | Н | 1 | J | K | L | M | N | |---------|-------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Overall | From | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | | Anchor | From | 1/2 | | 1/2 | | 1/2 | | 1/2 | | 1/2 | | 1/2 | | 1/2 | | | Length | Up to, but | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | | (in.) | not including | | 1/2 | | 1/2 | | 1/2 | | 1/2 | | 1/2 | | 1/2 | | 1/2 | ### TorqueMaster L.D. Screw Anchor Product Data | Size (in.) | SKU | Thread Length (in.) | Drill Bit Size
(in.) | Wrench/Socket Size (in.) | Box Qty | |---------------|-------|---------------------|-------------------------|--------------------------|---------| | 3/8" x 1-3/4" | 53246 | 1-3/4" | 3/8" | 9/16" | 50 | | 3/8" x 2-1/2" | 53247 | 2-1/2" | 3/8" | 9/16" | 50 | | 3/8" x 3" | 53248 | 3" | 3/8" | 9/16" | 50 | | 3/8" x 4" | 53249 | 4" | 3/8" | 9/16" | 50 | | 1/2" x 3" | 53250 | 3" | 1/2" | 3/4" | 25 | | 1/2" x 4" | 53251 | 4" | 1/2" | 3/4" | 25 | | 1/2" x 5" | 53252 | 5" | 1/2" | 3/4" | 25 | | 1/2" x 6" | 53253 | 5" | 1/2" | 3/4" | 20 | | 1/2" x 8" | 54917 | 5" | 1/2" | 3/4" | 10 | | 5/8" x 3" | 53254 | 3" | 5/8" | 15/16" | 10 | | 5/8" x 4" | 53255 | 4" | 5/8" | 15/16" | 10 | | 5/8" x 5" | 53256 | 5" | 5/8" | 15/16" | 10 | | 5/8" x 6" | 53257 | 6" | 5/8" | 15/16" | 10 | | 5/8" x 8" | 54918 | 6" | 5/8" | 1-1/8" | 5 | | 3/4" x 4-1/2" | 53258 | 4" | 3/4" | 1-1/8" | 10 | | 3/4" x 5-1/2" | 53259 | 5" | 3/4" | 1-1/8" | 10 | | 3/4" x 6-1/4" | 53260 | 5" | 3/4" | 1-1/8" | 5 | | 3/4" x 8" | 54919 | 7" | 3/4" | 1-1/8" | 5 | ### TorqueMaster L.D. Screw Anchor Installation Instructions - 1. **DRILL** hole in concrete using a hammer drill. Use TorqueMaster SDS+ drill bits and an SDS hammer drill for best results. The hole must be at least 1/4" deeper than the length of the fastener. - 2. **CLEAN** hole of debris and dust using a vacuum or compressed air. - 3. **DRIVE** fastener into pre-drilled hole using a powered impact wrench. Anchor should be driven until the head washer comes in contact with the part being fastened. The anchor must be snug after installation. ## TorqueMaster L.D. Screw Anchor Installation Parameters | Chamadaniatia | Complete | 1124 | Nominal Anchor Diameter (inch) | | | | | | | | | |--|-------------------------|-----------------|--------------------------------|------------------|----------------|--------------------|-------------------|-----------------|-----------------|--------------------|--| | Characteristic | Symbol | Unit | 3/8 | | 1/2 | | 5/8 | | 3/4 | | | | Drill Bit Diameter | Do | in.
(mm) | 3/8
(9.5) | 3/8
(9.5) | 1/2
(12.7) | 1/2
(12.7) | 5/8
(15.9) | 5/8
(15.9) | 3/4
(19.1) | 3/4
(19.1) | | | Nominal Embedment Depth | h _{nom} | in.
(mm) | 2 1/2
(64) | 3 1/4
(83) | 3
(76) | 4 1/4
(108) | 3 1/4
(83) | 5 (127) | 4
(102) | 6 1/4
(159) | | | Effective Embedment Depth | h _{ef} | in.
(mm) | 1.85
(47) | 2.49
(63) | 2.21
(56 | 3.27 (83) | 2.36
(60) | 3.85
(98) | 2.97
(75) | 4.89
(124) | | | Minimum Hole Depth | h _{hole} | in.
(mm) | 2 3/4
(70) | 3 1/2
(89) | 3 3/8
(86) | 4 5/8
(117) | 3 5/8
(92) | 5 3/8
(137) | 4 3/8
(111) | 6 5/8
(168) | | | Fixture Hole Diameter | d _f | in.
(mm) | | /2
2.7) | | 5/8
15.9) | | /4
9.1) | | 7/8
22.2) | | | Maximum Installation Torque | T _{inst,max} | ft-lbf
(N-m) | 35 (47) | 50 (68) | 45
(61) | 65 (88) | 85
(115) | 100
(136) | 115
(156) | 150
(203) | | | Maximum Impact Wrench Torque Rating | T _{impact.max} | ft-lbf
(N-m) | 380
(515) | | Minimum Concrete Thickness | h _{min} | in.
(mm) | 4 (102) | 4 3/4
(121) | 4 3/4
(121) | 6 3/4
(171) | 5 (127) | 7 (178) | 6
(152) | 8 1/8
(206) | | | Critical Edge Distance | Cac | in.
(mm) | 4 (102) | 5 (127) | 4 1/2
(114) | 5 (127) | 3 3/4
(95) | 7 (178) | 4 1/2
(114) | 8
(203) | | | Minimum Edge Distance (C _{min}) | C _{min} | in.
(mm) | 1 1/2
(38) | 1 1/2
(38) | 1 3/4
(44) | | | Minimum Anchor Spacing (S _{min}) | S _{min} | in.
(mm) | 3
(76) | 3
(76) | 3
(76) | 3
(76) | 4
(102) | 4
(102) | 4
(102) | 4
(102) | | | Minimum Overall Anchor Length | | in.
(mm) | 2 3/4
(76) | 3 1/2
(89) | 3 1/4
(82) | 4 1/2
(114) | 3 1/2
(89) | 5 1/4
(133) | 4 1/4
(108) | 6 1/2
(165) | | | Torque Wrench Socket Size | - | in.
(mm) | 9/ | '16 | | 3/4 | | 15/16 | | 1 1/8 | | | Maximum Fixture Thickness ² | t _{fix} | in.
(mm) | L-2 1/2
(L-64) | L-3 1/4
(L-83 | L-3
(L-76) | L-4 1/4
(L-108) | L-3 1/4
(L-83) | L-5 (L-
127) | L-4 (L-
102) | L-6 1/4
(L-159) | | ^{1.} The tabulated data is to be used in conjunction with the design criteria given in ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable $^{{\}it 3. For a glossary of definitions for terms listed above, visit www.fastener$ $connection.com}\\$ ^{2.} L = total anchor length ## TorqueMaster L.D. Screw Anchor Tension & Shear Design Information^{1,2} | Characteristic | Symbol | Unit | | Nominal Anchor Diameter | | | | | | | |---|-------------------------------|-------------------|--------------------|-------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | Characteristic | Symbol | Unit | 3/8" | | 1/2" | | 5/8" | | 3/4" | | | Nominal Embedment Depth | h _{nom} | in
(mm) | 2 ½
(64) | 3 ¼
(83) | 3
(76) | 4 ¼
(108) | 3 ¼
(83) | 5
(127) | 4
(102) | 6 ¼
(159) | | Anchor Category | 1, 2, or 3 | - | | | | 1 | | | | | | | | Steel S | Strength in Ten | sion and Shea | ır | | | | | | | Minimum specified ultimate strength | f _{uta} | psi
(N/mm²) | | ,000
65) | 107,000
(738) | | 102,000
(703) | | 99,000
(683) | | | Minimum specified yield strength | f _y | psi
(N/mm²) | | 800
12) | 85,600
(590) | | 81,600
(563) | | 79,200
(546) | | | Effective stress area (screw anchor body) | A _{se} | in²
(mm²) | 0.0943
(60.8) | | 0.1768
(114.4) | | 0.2703
(174.4) | | 0.3988
(257.3) | | | Steel Strength in Tension | N _{sa} | lb
(kN) | 10,465
(46.6) | | 18,920
(84.1) | | 27,570
(122.6) | | 39,480
(175.6) | | | Strength Reduction Factor for Steel Failure in
Tension | Ø _{sa} | - | | | | 0.6 | 5 | | | | | Steel Strength in Shear | V_{sa} | lb
(kN) | 4,815
(21.4) | 4,850
(21.6) | 7,270
(32.3) | 9,370
(41.7) | 10,300
(45.8) | 12,735
(56.7) | 14,240
(63.3) | 14,240
(63.3) | | Steel Strength in Shear, Seismic | V _{sa,eq} | lb
(kN) | 4,075
(18.1) | 4,075
(18.1) | 5,075
(22.6) | 7,140
(31.8) | 8,030
(35.7) | 10,300
(45.8) | 12,105
(53.9) | 12,105
(53.9) | | Strength Reduction Factor for Steel Failure in
Shear | Ø _{sa} | - | | | | 0.6 | 0 | | | | | | | Pu | Illout Strength | in Tension ³ | | | | | | | | Pullout Strength in Uncracked Concrete | N _{p,uncr} | lb
(kN) | - | - | - | - | - | - | - | - | | Pullout Strength in Cracked Concrete | N _{p,cr} | lb
(kN) | - | - | 3,225
(14.3) | - | - | - | - | - | | Pullout Strength in Cracked Concrete, Seismic | $N_{p,eq}$ | lb
(kN) | - | - | 3,225
(14.3) | - | - | - | - | - | | Normalization Exponent, Uncracked Concrete | n | - | - | - | 0.50 | - | - | - | - | - | | Normalization Exponent, Cracked Concrete Strength Reduction Factor for Pullout Strength in | n
Ø _p | - | - | - | 0.35 | | | - | - | | | Tension | · | Concret | e Breakout Str | onath in Tonsi | on | | | | | | | | | | | | | 2.27 | 2.26 | 2.05 | 2.07 | 4.00 | | Effective Embedment | h _{ef} | in
(mm) | 1.85
(47) | 2.49
(63) | 2.21
(56) | 3.27
(83) | 2.36
(60) | 3.85
(98) | 2.97
(75) | 4.89
(124) | | Effectiveness Factor for Uncracked Concrete | k _{uncr} | - | | 27 | | | | 24 | | | | Effectiveness Factor for Cracked Concrete Strength Reduction Factor for Concrete Breakout | K _{cr} | - | 1 | .7 | 21 | | | 17 | | | | Strength in Tension | $ oldsymbol{\emptyset}_{cb} $ | - | | | | 0.6 | 5 | | | | | Axial stiffness in service load range in uncracked concrete | eta_{uncr} | lb/inch
(N/mm) | 63,150
(11,059) | 207,850
(36,400) | 139,250
(24,386) | 140,060
(24,528) | 222,870
(39,031) | 254,980
(44,653) | 292,630
(51,247) | 305,530
(53,506) | | Axial stiffness in service load range in cracked concrete | β_{cr} | lb/inch
(N/mm) | 63,150
(11,059 | 174,020
(30,476) | 130,385
(22,834) | 140,060
(24,528) | 105,130
(18,411) | 192,280
(33,673) | 160,050
(28,029) | 165,525
(28,968) | | | | Concre | te Breakout St | rength in She | ar | | | | | | | Nominal Diameter | d _o ² | in
(mm) | 3/8
(9.5) | 3/8
(9.5) | 1/2
(12.7) | 1/2
(12.7) | 5/8
(15.9) | 5/8
(15.9) | 3/4
(19.1) | 3/4
(19.1) | | Load Bearing Length of Anchor | l _e | in
(mm) | 1.85 | 2.49 (2.49) | 2.21 (56) | 3.27
(83) | 2.36 (60) | 3.85
(98) | 2.97
(75) | 4.89
(124) | | Reduction Factor for Concrete Breakout Strength in Shear | Ø _{cb} | - | | | | 0.7 | 0 | | | | | | | Concr | rete Pryout Str | ength in Shea | r | | | | | | | Coefficient for Pryout strength | k _{cp} | - | | 1.0 | | 2.0 | 1.0 | | 2.0 | | | Reduction Factor for Pryout Strength in Shear | Ø _{cp} | - | | | | 0.7 | | | | | | | | | | | | | | | | | ^{1.} The tabulated data is to be used in conjunction with the design criteria given in ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable. $^{{\}it 3. Where no value is reported for pullout strength, the resistance does not need to be considered}\\$ ^{2.} All values of Ø were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of Ø must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for the appropriate Ø factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2, as applicable, are used.